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ABSTRACT

Translational research hinges on the ability to make
observations in model systems and to implement
those findings into clinical applications, such as the
development of diagnostic tools or targeted ther-
apeutics. Tumor cell lines are commonly used to
model carcinogenesis. The same tumor cell line
can be simultaneously studied in multiple research
laboratories throughout the world, theoretically
generating results that are directly comparable.
One important assumption in this paradigm is that
researchers are working with the same cells.
However, recent work using high throughput geno-
mic analyses questions the accuracy of this
assumption. Observations by our group and others
suggest that experiments reported in the scientific
literature may contain pre-analytic errors due to
inaccurate identities of the cell lines employed. To
address this problem, we developed a simple
approach that enables an accurate determination
of cell line identity by genotyping 34 single nucleo-
tide polymorphisms (SNPs). Here, we describe the
empirical development of a SNP panel identification
assay (SPIA) compatible with routine use in the
laboratory setting to ensure the identity of tumor
cell lines and human tumor samples throughout the
course of long term research use.

INTRODUCTION

The recognition that cancer is a genomic disease has
prompted significant efforts to characterize large numbers
of human tumor samples. For example, a pilot project
called The Cancer Genome Altas (TCGA) has begun to
sequence thousands of samples from three common tumor
types (i.e. brain (glioblastoma multiforme), lung (squa-
mous carcinoma) and ovarian (serous cystadenocarci-
noma)) with a long-term goal of comprehensive human
cancer genome characterization (National Human
Genome Research Institute, http://www.genome.gov).
Discoveries in human tumor samples will pave the road
in our understanding of commonly altered gene pathways
and lead to pre-clinical studies to address the biologic
significance of these newly identified mutations, amplifica-
tions and deletions.

Pre-clinical, functional studies are often conducted in
tumor cell lines as model systems for understanding
perturbations in primary human tumors. In addition to
functional studies, cell lines are now important in the
identification of therapeutic targets and in the under-
standing of molecular pathways related to drug–tumor
interactions as recently demonstrated by Lamb et al. (1).

A MedLine search of ‘cell line’ and ‘cancer human’
identified 96 758 articles where human cell lines have been
employed to study cancer biology. Bio-resource centers
preserve and sell human cell lines. For example, the
American Type Culture Collection (ATCC, http://
www.lgcpromochem-atcc.com/) provides researchers with
a collection of 700 human cancer cell lines. Commonly,
cell lines are transferred extensively between investigators
and institutes, and may be cultivated over prolonged
periods of time. One well-recognized risk in cell line
maintenance is human error, either by mislabeling or
cross-contamination, the latter ultimately resulting in
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overgrowth of a contaminating cell line with a shorter
doubling time after extended cultivation. In many
cases, scientists are unaware that such errors have
occurred.

Contamination remains a persistent concern among
biomedical researchers. Therefore, in an effort to identify
latent cross-contamination or other errors in mislabeling,
cell lines included in the NCI60 panel were systematically
genotyped at the Sanger Institute using the Affymetrix
single nucleotide polymorphism (SNP) array (10K SNP
array) (Cancer Genome Project, http://www.sanger.ac.uk/
genetics/CGP/Genotyping/synlinestable.shtml). In this
study, the presumed breast adenocarcinoma cell line,
NCI-ADR-RES (2), and human ovarian carcinoma
cell line, OVCAR-8, were determined to share 99% of
genotype calls (out of 10 000 SNPs). The Sanger Institute
also reported that two glioblastoma cell lines, SNB19 and
U-251, exhibited a near-identical genotype. The MDA-
MB435 cell line, another presumed breast adenocarci-
noma cell line, was determined to be genotypically
identical to the M14 melanoma cell line (3).

These errors due to inadvertent cross-contamination or
processing remain largely unrecognized by investigators
and may have profound adverse effects on experimental
results and their interpretation. MDA-MB435 alone is
cited in over 400 publications as a breast cancer cell line.

Cross-contamination and mislabeling may represent
a significant confounder to experimental interpretation
(4–6) and cases of cell line mistaken identity leading to
spurious results are a major concern (7). Occasionally
researchers adopt techniques to control for this problem,
such as short tandem repeats (STR) DNA fingerprinting
(8). It has been shown that random dinucleotide markers,
the most informative class of microsatellites, are 5–8 times
more informative than random SNPs, but 2–12% of SNPs
are more informative than the median dinucleotides (9).
Indeed, SNPs as DNA markers have been shown to be
well suited for different purposes such as animal identi-
fication (10), identification of population ancestry (11) and
for forensic purposes (12).

The advent of high-throughput genotyping both high-
lights the challenges of sample identity verification and
provides a mechanism for its resolution. The ability of
high-density oligonucleotide arrays to accurately genotype
hundreds of thousands of SNP loci in parallel provides an
unequivocal molecular fingerprint of each sample.
Genotypic differences between two individuals along the
entire genome would score less than 0.1%. However, when
genotyping SNPs the percentage of genotype differences
will significantly increase.

Our analysis of several hundred tumor samples, cell
lines and xenografts using SNP arrays has uncovered
several instances in which samples thought to be distinct
were actually genetically identical. This stimulated our
interest in genetic-based methods to precisely identify
DNA samples a priori. To this end, we have developed an
assay that employs 30–50 single loci across the genome
and is capable of distinguishing any two DNA samples
based on genotype calls. Concomitantly, this assay can
correctly identify a given DNA sample by comparing the
genotype call set (‘barcode’) within a reference database

that contains bar codes of the most commonly used cell
lines. Widespread application of this approach may reduce
erroneous experimentation and data interpretation asso-
ciated with inaccurate tumor sample identity, thereby
providing a significant benefit to cancer scientists.

MATERIALS AND METHODS

Oligonucleotide SNPArray Analysis

SNP detection on the 50K Xba array was performed as
described previously (3,13–15). Arrays were scanned with
a GeneChip Scanner 3000. Genotyping calls and signal
quantification were obtained with GeneChip Operating
System 1.1.1 and Affymetrix Genotyping Tools 2.0
software.

Cell lines

The initial dataset included genotype data of 155 cell lines
derived from different organs including: breast (50),
colorectal (12), endometrial (4), glioma (11), leukemia
(6), lung (27), melanoma (12), ovarian (6), pancreas (3),
prostate (4), and renal (18) cell lines. All these were
neoplastic cell lines, except for two non-malignant breast
cell lines. Seven additional cell lines were used only for the
validation step of the study (analysis on Sequenom
platform): prostate (5), and lung (2). The NCI60 cancer
cell line collection (16–18) is included in the study dataset.
A complete annotated list of the cell lines used in this
study is included in the Supplementary Material ‘List of
Cell Lines used in the SPIA study’.

Establishment of N15C6 and N33B2 cell lines. The
N15C6 and N33B2 epithelial cell lines were established
from normal prostate tissues explanted from two different
patients and immortalized through transduction with the
recombinant LXSNE6E7 retrovirus harboring the human
papilloma virus E6 and E7 genes as described previously
(19). Transduced cells were selected by use of 400 mg/ml
geneticin. After an initial round of cell death and crisis,
cells resistant to geneticin grew out and were considered
immortal after 10 passages. Spectral karyotype analysis
demonstrated both cell lines to be pseudo-diploid.
The N15C6 (at passage 45, 10 cells analyzed) karyo-
type was determined as: 44, X, dupinv(Y)(q11q12),
i(5)(p10), der(8;19)(q10;p10), der(11;15)(q10;q10), der
(13;20)(q10;q10), �16, +20, del(22)(q13) (20). The
N33B2 karyotype (at passage 21, 9 cells analyzed) was
determined as: 40–44, X,Y, -19 (4/7 cells), -22 (5/7 cells),
der(1)t(1;13)(p36;q32) (6/7 cells), i(8q) (5/7 cells),
der(13)t(11;13)(p10;q10) (2/7 cells), der(15)t(15;19)
(q10;p10) (3/7 cells) (21).
In this study we used eight passages of N15C6

(passages: 48, 50, 52, 54, 56, 58, 60, 63) and six passages
of N33B2 (passages: 21, 27, 33, 35, 37, 39).

Genotype distance

To quantitatively evaluate how similar two DNA samples
are, we introduce a similarity measure D. D is propor-
tional to the number of genotype mismatches between the
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samples and is normalized to the number of genotype calls
available for both samples.

Given a set of NSNPs individual SNPs, let CL1 and CL2
be the ordered sets of genotype calls of two samples and
vNSNPs=Card (T), where T ¼ i : cl1i 6¼ NoCall

�
\cl2i 6¼ NoCallg. For vNSNPs> 0, D is defined as:
Every mismatch counts 1, every match counts 0. The

distance is normalized over the number of available calls.
Due to technical limitations of the genotyping assay, the
genotype calls of some SNPs may not be available for one
or the other DNA sample, therefore vNSNPs�NSNPs.
In addition to the distance D and to the number of
available calls vNSNPs, the algorithm implementing the
genotype distance provides summary information on the
type of matches and mismatches. It evaluates: (i) the count
of mismatches where the two samples are homozygous for
different alleles (AA versus BB or vice-versa—like double
mutation), (ii) the count of mismatches where one is
homozygous and the other is heterozygous (and vice-
versa—gain or loss of heterozygosity), (iii) the count of
homozygous matches (AA versus AA and BB versus BB)
and the count of heterozygous matches (AB versus AB).
For each mismatch the algorithm reports the identifier of
the sample with largest number of heterozygous calls. The
allelic imbalance information (loss of heterozygosity) may
be important when handling presumed matched (from the
same individual) normal-tumor tissue samples, for exam-
ple upstream to sequencing. The algorithm would check
the consistency of the match and verify which is the tumor
sample and which is the normal sample. For specific
purposes, the implementation of the distance D can be
modified to weight different types of mismatch (see
Supplementary Material ‘Genotype Distance with error
weighting’).

SNP panel selection procedure

We know that extensive genotype profiles of DNA
samples can work as a unique identifier of samples.
We hypothesized that by using a small number of SNPs
we would still be able to accurately distinguish samples,
providing researchers with a convenient way to check the
identity of their samples during the course of their use in
the laboratory.
Before applying the computational search of the most

suitable SNPs, we filtered the 50K SNPs represented on
the Xba Affymetrix SNP Array, using the following rules:
(i) SNPs have assigned rs identifier (Reference SNP
records); (ii) SNPs are not located in intronic regions
and (iii) SNPs are also represented on the 10K Affymetrix
oligonucleotide array (�8K). The second rule allows for
eventual application of the test on RNA samples and the
third rule ensures that the panel will be useful for
fingerprint comparison experiments with samples run on
the 10K array.

In order to define and rank a list of suitable SNPs, we
applied the following procedure: (i) we randomly divided

the cell line dataset into training and testing sets using
two-thirds and one-third of the samples, respectively,
(ii) on the training set, we evaluated the minor allele
frequency, the heterozygosity rate and the call rate for
each SNP across all samples; (iii) we then identified the
SNPs satisfying the Hardy Weinberg equilibrium applying
elastic boundaries (PAA> 0.22, PBB> 0.22, PAB> 0.44)
and having SNP call rates greater than 80%, and (iv) on
the test set, we evaluated the heterozygosity rate of the
identified SNPs. We iteratively ran this procedure 1000
times (repeated hold-out approach). The procedure did
not predefine the number of SNPs to select; therefore, at
each iteration we obtained a variable number of SNPs. We
then ranked the SNPs based on the selection rate on the
training set and on the mean value of the heterozygosity
rates on the test sets, evaluated on the 1000 iterations.
The mean number of SNPs identified at each iteration was
30.15 with a standard deviation of 6.23 (min=14 and
max=54). The mean value of the heterozygosity on the
test set was 0.3636 with a standard deviation of 0.0775
(min=0.0526 and max=0.7420). The corresponding
distributions are shown in Supplementary Figure 1. The
top ranked SNPs represent the best choices.

SPIA probabilistic test on cell line genotype distance

In order to discern when two cell lines are close enough to
be called similar and when they are not, we implemented a
double probabilistic test to apply on the genotype
distance. The test score depends on the number of
matches and on the total number of SNPs evaluated for
the two cell lines, given a required confidence. The test
output reads: ‘similar’, ‘different’ or ‘uncertain’ and relies
on the probability of the evaluated distance belonging to
the population of real matched pairs or to the population
of real non-pairs. If the output test is not clear (depending
on the required confidence), the score will be ‘uncertain’
and a second panel of SNPs would need to be investigated.

If we assume the SNPs being independent (call at locus
i does not depend on call at locus j 6¼ i) and the genotype
call probability being the same at each SNP, then
the probability of having k matches (successes) out of N
SNPs (trials) follows the binomial distribution:

Pk ¼
N
k

� �
PkQN�k ¼ N!

k!ðN�kÞ!P
kQN�k, where P and Q are

the probability of match and mismatch, respectively, and
N is the number of available SNPs (vNSNPs). We can draw
the distributions of real matched pair and of real non-pair,
by knowing the probability of match at a single SNP
for a real matched pair (PM) and for a non-matched
pair (Pnon-M). For a given vNSNPs, we can then define
areas corresponding to ‘different’, ‘uncertain’ or ‘similar’.

DðCL1,CL2Þ ¼
1

vNSNPs

X
i¼1...NSNPs

d cl1i; cl2ið Þ; where d cl1i; cl2ið Þ ¼
1 if cl1i 6¼ cl2i
0 if cl1i ¼ cl2i or cli ¼ NoCall:

�
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The area limits depend on the level of confidence

which is needed for the application. In brief, the mean

number of successes kmean is equal to NPM and the

standard deviation (sdkmean) is sdkmean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NPMð1� PMÞ

p
.

The probability that a distance measurment falls within m

standard deviations from the mean (i.e. within the interval

[kmean�m � sdkmean, kmean+m � sdkmean]) is given by the

integral of the distribution function. By setting the

parameter m one can define the area limits corresponding

to ‘different, ‘uncertain’ and ‘similar’. For example, setting

m=2, the integral of the distribution function is 0.954.

Figure 1 shows the binomial distributions of real match

pair population (red dots) and of non-pair population

(blue dots) for N equal to 30; the probabilities PM and

Pnon-M, for the real match pair population and the non-

pair population, are set to 0.9 and 0.4 respectively and mM

and mnon-M are set to 2 and 1, respectively. The red, blue

and green bars define regions of ‘different, ‘uncertain’ and

‘similar’ SPIA test calls. The smaller the number of SNPs

is, the narrower the region of uncertainty and the higher

the probability of making an incorrect call.
In theory, for Hardy–Weinberg SNPs we expect Pnon-M

to be equal to 0.375. For exactly the same DNA sample we
expect PM being equal to 1. In fact, if we genotype the
same DNA sample twice using the same platform, the
expected number of mismatches depends on the platform
reproducibility error. If, for the same individual, we
compare the DNA extracted from normal tissue and from
tumor tissue, we expect some variation, most commonly
derived from loss of heterozygosity. Similarly, if we
compare DNA extracted years apart, some genomic
variation can be expected.

To empirically evaluate PM (probability of match for a
real match pair) we calculated the mean percentage of
matches using seven paired cell line samples, constituted
by tumor cell line DNA and blood extracted DNA from
the same individual. Using the 100 top ranked SNPs, the
value of PM was estimated as 90%.

Sequenom platform for genotyping human cells

We tested a SPIA panel using Sequenom mass spectro-
metric genotyping technology (22). This MALDI-TOF
mass spectrometer system can differentiate SNP alleles
given the different molecular weights of the allele-specific
products. First, a software package supplied by the
manufacturer is used to design a series of primers that
enable SNP detection in a multiplexed fashion. To carry
out SNP detection, tumor-derived genomic DNA is first
subjected to whole genome amplification to generate
enough material for a series of multiplexed reactions,
which are carried out in parallel on microtitre plates.
Next, multiplexed PCR is performed (in 96- or 384-well
plate format) on tumor genomic DNA to amplify regions
harboring loci of interest, or ‘query’ nucleotides. After
denaturation, PCR products are incubated with oligonu-
cleotides that anneal immediately adjacent to the query
nucleotide, and a primer extension reaction is performed
in the presence of chain-terminating dideoxynucleotides
that generate allele-specific DNA products. Primer exten-
sion products are spotted onto a specially designed chip
and analyzed by MALDI-TOF mass spectrometry to
determine the single allele. Since allele calling depends
exclusively on the mass of the resulting primer extension
product, the Sequenom assay does not require expensive
fluorescence primer labeling and has a very low error rate.
SPIA was written in R (23) (the R code is available on

request).

RESULTS

Our approach to selection of a SNP panel to distinguish
any cell line or tumor pair in use by the research
community is shown in Figure 2. SNP computational
selection is based on empirical data from 155 cell lines
genotyped on 50K oligonucleotide SNP arrays. The
number of independent loci chosen depends on the level
of confidence one needs to make a definitive identification.
Although the panel is trained on the identification of cell
lines, this approach is suitable for additional applications,

Figure 1. Schematic illustration of probabilistic test settings. The figure shows the binomial distributions of real match pair population (red dots) and
of non-pair population (blue dots) for N equal to 30 and PM and Pnon-M, for the real match pair population and the non-pair population, equal to
0.9 and 0.4. The red, blue and green bars define regions of ‘different’ (mnon-M set equal to 1), ‘uncertain’ and ‘similar’ (mM set equal to 2) SPIA test
calls. The smaller the number of SNPs is, the narrower the region of uncertainty and the higher the probability of making an incorrect call.
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such as matching human tumor samples with their
non-neoplastic normal tissue. The resulting assay,
termed the SNP panel identification assay (SPIA), allows
investigators to accurately identify known cell lines and
tumors from the genotype of extracted DNA.

SNP panel selection

To define the optimal SNP panel, we reasoned that the
ideal SNPs should collectively maximize the probability of
obtaining distinct genotype calls on different samples,
i.e. exhibiting the greatest heterogeneity across samples.
SNPs with two alleles (A and B) give rise to possible
genotype calls AA, BB and AB. Hypothetically, genotype
frequencies equal to one-third each should maximize
the probability of obtaining distinct genotyping calls on
different samples, with 9 SNPs being sufficient to
distinguish 20 000 samples (see Supplementary Material

‘How many SNPs do we need to have a robust
fingerprint’).

However, in a given population, SNPs under neutral
selection are in Hardy–Weinberg equilibrium, in which
allele frequencies fit the equation P2+2PQ+Q2=1.
Since the vast majority of SNPs in the human genome
approximate Hardy–Weinberg equilibrium, the optimal
genotype probabilities are PAA=0.25, PBB=0.25,
PAB=0.5 for genotype calls AA, BB and AB, respectively.

The SNP panel will have the most power to distinguish
individuals when the selected SNPs are independent of one
another. This can be accomplished by selecting SNPs from
different chromosomes and/or SNPs from the same
chromosome that are not in linkage disequilibrium.

If all human cell lines were genotyped, one could rank
the SNPs that best distinguish these cell lines from the
entire set based on the call frequencies. Iterative analysis

Figure 2. Schema of SNP panel identification assay (SPIA) applicability and use modality. One typical scenario would be to check out of the identity
of a cell lines (SAMPLE 1) with respect to already fingerprinted cell lines, the data of which are stored in the BARCODING REFERENCE
database. Another scenario would be to determine the identity of two cell lines, for example derived from the same patients, one from benign tissue
cells and one from cancer tissue cells (SAMPLE 1 and SAMPLE 2). First, the DNA is extracted from the cell line(s) and is experimentally genotyped
along the set of specified loci included in the SNP panel. Sequenom mass spectrometric technology, allele-specific PCR or other techniques can be
implemented. Afterwards, the allele call output sets (DNA fingerprints) are compared. Comparison is performed pair-wise. Comparison with all the
fingerprints stored in the reference database can be performed on demand. The SPIA test provides the genotype distance between the two samples
and detailed information on the allele mismatches. It also provides the user with a probability measure of the test output, scoring the tested pair as
‘similar’ or ‘different’. If the test result is uncertain, the assay can be repeated using an additional SNP panel.
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would then best define the most accurate and parsimo-
nious panel identifying both which SNPs to use and how
many are needed. However, genotype information is not
yet available for all cell lines. Instead, we used a
computational approach for the selection of candidate
SNPs using available empirical genotype data from a
broad set of cancer cell lines (n=155) derived from
different organs (e.g. breast, prostate, lung, etc.), and
applied an empirical learning approach followed by
validation on an independent cell line dataset. The cell
lines used in this study are listed in Supplementary
Material, Table 1 (‘List of cell lines used for SPIA study’).

Applying general filtering criteria to the 50K genotype
data, as detailed in Materials and Methods, resulted in a
set of 5.3K SNPs, which genotype characteristics graphi-
cally represented in Figure 3.

In brief, we divided the cell line set into training and
testing sets and using the set of filtered SNPs, we selected
the SNPs that both satisfied Hardy–Weinberg equilibrium
constraints and exhibited overall call rates of >80%
across the dataset. After 1000 iterations of training and
testing, the SNPs selected at each iteration were ranked
based on the selection rate at the end of the iterative
procedure. The iterative SNP selection procedure is
detailed in Methods. Similar results in terms of SNP
suitability were obtained when SNPs were selected based
on concordance with a random allele distribution (e.g. 1/3
frequency for each 2-SNP allele).

Set of best SNPs

One hundred and thirty three cell lines were used for the
selection of the best SNPs through the iterative process, as
described in SNP panel selection. Supplementary Table 2

shows the ranked list of SNPs (top list) ordered by
selection rate after the 1000 iterations. The table also
reports the mean value of heterozygosity frequency for
each SNP evaluated on the sampled test set of each
iteration. Supplementary Figure 2 represents the location
along the genome of all the selected SNPs and highlights
the 100 top ranked.

Comparison of pair-wise distances using multiple SNP
panels and implementation of statistical test (SPIA)

To quantitatively measure the relatedness of two samples,
we determined a genotype distance function D, which is
proportional to the number of genotype mismatches
between the two samples (see Materials and Methods,
‘Genotype distance’ and Figure 4, Panel A). It also allows
to easily compare multiple pairs of samples and to rank
them based on relatedness. In our initial cell line data
set, using 5.3K SNPs, the pair-wise mean distance D is
0.4735 and the standard deviation 0.0357 (min=0 and
max=0.5765). Eleven cell line pairs exhibited unusually
strong similarity (see Table 1). Some have previously
been reported to be similar: M14 and MDA.MB435,
NCI.ADR.RES and OVCAR.8, and SNB.19 and U251
(Cancer Genome Project, http://www.sanger.ac.uk/
genetics/CGP/Genotyping/synlinestable.shtml).
Interestingly, the MCF7 breast cancer cell line showed a

remarkably short distance from two other breast cancer
lines (BT.20 and KPL.1), suggesting a high degree of
genetic similarity. This difference is significantly lower
than the reproducibility error we evaluated for the same
platform (0.02%, data not shown), suggesting that these
cell lines may be derived from a single individual. MCF7
and BT.20 have been reported as being ER positive and
ER negative, respectively, and as having different pheno-
types (24, 25). Similarities between MCF-7 and KPL-1
has been previously reported (http://www.sanger.ac.uk/
genetics/CGP/Genotyping/synlinestable.shtml). To our
knowledge no report exists on the similarity between
MCF7 and BT.20. This finding will require independent
validation.
After excluding the 9 cell lines involved in the detected

similar pairs (N=11), we were left with 146 distinct cell
lines. Of these, 133 were then used to identify and rank the
best SNPs through a repeated hold-out training and
testing approach, and 13 were used as an independent
validation set.
To measure the effect of the SNP selection process on

the ability to distinguish different cell lines and to
determine the minimum number of SNPs required to
identify genetically similar cell lines, we evaluated the pair-
wise distances using several sets of SNPs sampled from the
100 top ranked ones. We varied the number of single loci
randomly selecting 80, 60, 40 and 20 SNPs. In Table 2 the
mean distances as evaluated between all the possible pairs
of two subsets of cell lines are reported; the first subset
contains the 133 cell lines used in the selection process,
whereas the second set is the independent validation set.
Table 2 also includes the mean distance values evaluated
on the �50K SNPs contained on the 50K Xba chip and
on the �5.3K set of filtered SNPs. We can appreciate how

Figure 3. Genotype characteristics of the filtered 5.3K SNPs. We
filtered the 50K SNPs from the Affymetrix Xba chip ending with a set
of about 5.3K SNPs. Genotype characteristics were evaluated for this
set of SNPs on a collection of 155 cell lines. Panels (A) and (B) show
the heterozygosity frequency and the log of the p-value of the Hardy–
Weinberg equilibrium test, respectively. In the context of identifying
SNPs for the SPIA panel, we expect the best SNPs being the ones with
minor allele frequency close to 0.5 and Heterozygosity frequency close
to 0.5 (i.e. P-value Hardy–Weinberg=1).
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the distance values increase between the first collection
of SNPs and the filtered set of 5.3K SNPs. Comparing the
distances obtained for the smaller sets of SNPs (i.e. 80, 60,
40 and 20 SNPs) with the 5.3K set, we see a significant
increment of percentage differences. This result holds on
the independent validation set of cell lines, confirming the
ability of the selected SNPs to distunguish different cell
lines. When comparing the results obtained with 80, 60, 40
and 20 SNPs to each other, we observe that the mean pair-
wise distances do not change significantly. As expected,
the standard deviations tend to increase when going from
80 to 20 SNPs (see Figure 4).
We then added to the dataset the 9 cell lines identified as

being very similar during the preprocessing step and

therefore excluded from the SPN selection process and, by
using the same sets (i.e. 80, 60, 40 and 20), we ran the
distance and the statistical test, as described in the
Materials and Methods section. Briefly, this test scores
each single pair as ‘different’, ‘uncertain’ and ‘similar’,
based on the total number of queried SNPs, on the
number of matches and on a set of parameters adjusted on
the required level of confidence. The probability test was
applied setting the match probability for the non-pair and
for the matched pair population to 0.4 and 0.9,
respectively, and the parameter for the confidence level
to 3 and 2, respectively. With 80 and 60 SNPs all the ‘real
pairs’, eligible for the statistical test (10 out of 11), were
scored as ‘similar’. No other cell line pair was scored as

Figure 4. Graphical representation of SPIA results on 155 cell lines: pair-wise distances and probabilistic test using SNP panels of different sizes.
The number of possible combinations of pairs from a set of 155 samples is 11 935. Black dots represent distances were less than 90% of the genotype
calls available. (A) The genotype distance was evaluated on the 5279 SNPs, which were filtered starting from the 50K SNPs represented on the Xba
Affymentrix Array. The mean distance is 0.4736 and the standard deviation is 0.0358, accordingly to the confinement of almost all the evaluations.
Dots below the dotted gray line represent pairs of cell lines which are genotypically very similar to each other (they share more than 80% of the 5279
loci here considered), suggesting that they share the same ancestral. (B)–(E) Multi-panel distances using 80, 60, 40 and 20 SNPs randomly sampled
from the top 100 SNPs selected through the multi-step selection process. The mean distances are significantly higher respect to panel (A). The
probability test was applied setting the match probability for the non-pair and for the matched pair population to 0.4 and 0.9 respectively and the
parameter for the confidence level to 3 and 2 respectively. Red, blue and green dots indicate ‘different’, ‘uncertain’ and ‘similar’ test scores.
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‘similar’ (see Figure 4, Panels B and C). With 40 SNPs, 9
real pairs were scored ‘similar’, and one real pair was
scored ‘uncertain’ (see Figure 4, Panel D). Using the panel
of 20 SNPs a few cell lines were mis-scored as ‘similar’,
suggesting that this number of SNPs is insufficient for
accurate identity determination. To further prove the
efficacy of the SNP selection process with the goal of
defining an optimal SNP panel, we ran a ‘baseline
experiment’, randomly selecting four sets of SNPs
comprised of either 80, 60, 40 or 20 SNPs taken from
the 5.3K filtered set. We measured the pair-wise distances
on the two sets of cell lines as reported in Table 2. The
mean distance values are similar to the 5.3K set mean
distances but the standard deviations from the means are
larger compared to the experiments with the selected SNP
panels. Furthermore, in the randomly selected trials
unrelated samples were detected as having exactly the
same genotype calls for all the considered SNPs (see
Supplementary Table 3). These experiments suggest the
limitation of using randomly selected SNPs for the
development of an identification test.

These results suggest that any set of 40 SNPs
selected from the top 100 SNPs, listed in Supplementary
Table 2, provides researchers with a good SNP panel
for DNA sample identification. However, the more SNPs

in the panel, the more confident one can be in the
final call.

Distance between different cell line passages

A common concern cited with use of cell lines regards
genetic changes that occur during in vitro cultivation. Cell
line genomic stability when going from one passage to the
next can be assessed by comparing genomic profiles. The
ability to determine relatedness between samples suggests
that the SPIA distance score may be useful in characteriz-
ing genetic drift of cell lines over time in culture. In order
to first assess genetic stability over time and secondly to
evaluate the capability of SPIA assay to correctly identify
them regardless of the passage number, we genotyped and
studied two prostate cell lines, N15C6 and N33B2 (21),
over multiple passages using 50K Xba Affimetrix arrays.
We ran SPIA on different passages using 40 SNPs out of
the top 100 SNPs. The pair-wise distances were all equal
to zero (probabilistic test scores ‘similar’), suggesting that
our approach can correctly identify one cell line, regard-
less of the passage. Interestingly, when extensively looking
at the 50K data we noticed that, where the N33B2 was
very stable all along the genome, the cell line N15C6
exhibits genetic instability. The distance between passage
48 and passage 63 along chromosome 11 was about 0.2,

Table 1. List of 11 cell line pairs detected to have very similar genotype profiles, evaluated on a set of 5.3K SNPs

No of mismatches

Cell line
name (CL1)

Cell line
name (CL2)

Distance D Percentage of
valid calls

Homozygous (AA)–
Homozygous (BB)
[or vice versa]

Homozygous (AA or BB)–
Heterozygous (AB)
[or vice versa]

M14 MDA.MB435 0.0747 0.794 2 311
MCF7 BT.20 0.0279 0.781 0 115
MCF7 KPL.1 0.0271 0.797 0 114
NCI.ADR.RES OVCAR.8 0.0076 0.874 0 35
NCI.H460 H2195 0.0680 0.696 0 250
SNB.19 U251 0.0394 0.866 0 180
184A1 184B5 0.1084 0.978 37 523
BT.20 KPL.1 0.0308 0.831 1 134
H1450 H2141 0.0092 0.866 0 42
H1450 H220 0.0000 0.861 0 0
H2141 H220 0.0088 0.857 0 40

Table 2. Summary of pair-wise distances/differences varying the number of SNPs

Set of CLs (133) used for the SNP selection process Set of CLs (13) used for independent validation

Number of SNPs Mean distance D (SD) Min–max distance D Mean distance D (SD) Min–max distance D

�58 000a 0.3832 (0.0347) 0.2649–0.4891 0.4227 (0.0330) 0.3613–0.4962
5279b 0.4723 (0.0328) 0.3774–0.5765 0.4967 (0.0337) 0.4274–0.5699
80 0.66 (0.06) 0.44–0.86 0.65 (0.06) 0.49–0.78
60 0.66 (0.07) 0.37–0.90 0.65 (0.06) 0.50–0.77
40 0.66 (0.09) 0.28–0.94 0.65 (0.08) 0.46–0.85
20 0.66 (0.12) 0.20–1 0.64 (0.11) 0.40–0.90

CL, cell line.
aSet of SNPs represented on the 50K Xba chip.
bSet of filtered SNPs, used for the selection of the best SNPs.
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meaning that up to 20% of the genotype calls on
chromosome 11 differ between the two passages. Indeed,
these human papillomavirus (HPV) transfected cell lines
are known to be affected by the introduction of E7, a HPV
gene (26,27), resulting in instability on chromosome 11.
This experiment demonstrated that SPIA correctly iden-
tifies a cell line regardless of the passage number and
that using a dedicated panel of SNPs provides a useful
quantitative approach to monitor genetic drift of cell lines,
important for characterization of mammalian embryonic
cell lines, which may exhibit genetic instability over time.

A genotyping-based assay for tumor sample fingerprinting

One goal of the SPIA panel was to make it small enough
to allow it to be exported for routine use in the research
laboratory settings. Limited panels of small numbers of
microsatellite markers or SNPs are commonly used for
identification; however, given concerns regarding error
rates and non-informative SNP calls, these panels have
only limited value, especially when working with a variety
of samples. Therefore with the goal of exporting the SPIA
panel to other platforms, we tested the panel using
Sequenom mass spectrometric genotyping technology.
This MALDI-TOF mass spectrometer system can differ-
entiate SNP alleles given the different molecular weights of
the allele-specific products. This system also has the
advantage of being fully automated and regularly used in
genome centers throughout the world. We evaluated the
pair-wise distances on a set of 34 SNPs for a set of 93 cell
lines. The 34 SNPs were picked from the ranked list of
SNPs. Figure 5 shows the pair-wise distances. The mean
and the median distances are 0.656 and 0.594, respectively,
and the minimum and maximum distances are 0.059 and

0.941. As expected, the cell lines MCF7 and BT20 were
scored as ‘similar’.

DISCUSSION

Accurate tracking and labeling of samples is critical to
experimental integrity in the genomic era. This is
particularly true for cell lines, which are often cultured
over a period of years and are handed from one labora-
tory to another. Recent reports of inadvertent cross-
contamination or labeling mistakes can stay hidden from
researchers for years (2,28). Given the large number of
published reports that use functional cell line data to make
significant claims with respect to cellular mechanisms of
tumor biology and that this data may even serve as the
basis for pre-clinical therapeutic trials, establishment of
the proper identity is critical. While experimentally
possible, extensive genome-wide genotyping of cell lines
as part of standard operating procedures (SOPs) in a
laboratory is not practical or cost-effective. Therefore, we
developed the SPIA assay that allows investigators to
accurately identify cell lines taking into account both
issues of cost and feasibility.

SPIA is based on the selection of highly informative
SNPs for the creation of a DNA sample-specific barcode
that can be used for a likelihood evaluation of the DNA
identity. This assay was demonstrated to be suitable for
the identity check of a broad range of cell lines by using 40
SNPs. The more SNPs in the panel, the more confident the
final DNA identity determination.

To select an optimized SNP panel we developed an
in silico approach by mining 50K genotype data from
more than 150 cancer cell lines, derived from 11 different

Figure 5. Pair-wise distances of 93 cell lines genotyped on Sequenom platform. With the goal of exporting the SPIA assay to other platforms, we
tested a 34 SNP panel using the Sequenom platform on a set of 93 cell lines. The statistical test was applied to get individual score for each distance.
The pair made of MCF7 and BT20 was scored as ‘match’ (green dot), accordingly with expectations. One pair out of 4277 was scored as ‘uncertain’
(blue dot). All others 4276 pairs were correctly scored as ‘different’. The list of the 93 cell lines is reported in the Supplementary Material.
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tumor types. We reasoned that this approach would
be more solid for the identification of tumor cell lines
and tissue samples than taking SNPs based on their
genotype frequencies in normal human populations (29),
because genomic alterations, as loss of heterozygosity,
gain of heterozygosity and, less frequently, double
mutations affect tumor genotypes.

The SNP selection process we presented focused on the
task of general cell line identification. However, if a
research group works on a specific tumor type (e.g.
glioma) the assays could be tailored such that known
mutations at specific loci can be added to the panel. By
adjusting the model constraints, one can ask for more
or less conservative output calls and by increasing the
number of SNPs the identity test can become more
accurate (30). The general selection rule would still,
however, apply to these tailored SPIA assays. The SNPs
must still be genetically unlinked and systematically
spread across the genome so as to represent all the
chromosomes. Regions of known recurring deletion in
tumor samples must be avoided. SNP probes with similar
annealing temperatures can be selected to facilitate the test
implementation in case of multiplex PCR-based assay.

SPIA can track genomic drift across passages, look for
replicated samples (in a set of patients) and verify matched
tissues from the same individual (for example, normal and
tumor tissue of the same patient). In this last case, one can
adjust SPIA in order to force false positive identity calls.
One current alternative application of SPIA is in the
upfront analytical phase of a large genomic study. For
example, in the process of performing extensive genomic
characterization of prostate cancer cell lines, xenografts
and human tissues using SNP array analysis and extensive
sequencing for known mutations, SPIA was employed to
look for similar samples (unpublished data). Interestingly,
SPIA identified a xenograft sample as being genotypically
very similar to one of the tumor tissue samples (see
Supplementary Material ‘Genotype distance between a
rapid autopsy tissue and a xenograft’). Further investiga-
tion determined that the xenograft and primary tumor
samples were derived from the same individual. Without
the SPIA analysis, the relationship between these samples
would have gone unnoticed and may have led to over-
interpretations of the associated genomic alterations.

Thus, SPIA allows rapid and accurate barcoding of
many sample types, including cell lines, embryonic stem
cells and DNA from large numbers of clinical samples.

We envision that researchers would run the SPIA assay
in their laboratory on each new DNA sample at the
beginning of experiments and refer to an on-line publicly
available data bank for correct identification of their cell
line as a quality assurance measure. Investigators can
check the identity of a given cell line over many passages
and confirm that no contamination has occurred. This
might be critically important when two or more labora-
tories are comparing results of experiments using the same
cell lines. In addition to individual research groups, large
organizations or institutes that maintain cell lines such as
the ATCC can employ this method to credential the lines
that they carry. We also envision that core facilities at
research centers may provide this assay as a service.

Researchers would send out an aliquot of DNA to
external facilities, which using such platforms as the ABI
PRISM� SNaPshotTM Multiplex kit (Applied Biosystems)
(31), Sequenom mass spectrometer system or other
systems, would obtain confirmation of the cell line
identity. As a proof of principle, we demonstrated that
the Sequenom mass spectrometer system can be used of
this purpose by testing 34 SNPs from the SPIA assay. As
the NIH and other governmental agencies explore means
of making the best use of limited research funds, careful
annotation of samples will play a critical role. The SPIA
assay and other similar methods should become the
standard for validation of sample provenance.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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